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ABSTRACT
Swarming behavior, where coherent motion emerges from the interactions of many mobile agents, is 
ubiquitous in physics and biology. Moreover, there are many e˙orts to replicate swarming dy-namics in 
mobile robotic systems which take inspiration from natural swarms. In particular, un-derstanding how 
swarms come apart, change their behavior, and interact with other swarms is a research direction of special 
interest to the robotics and defense communities. Here we develop a theoretical approach that can be used to 
predict the parameters under which colliding swarms form a stable milling state. Our analytical methods rely 
on the assumption that, upon collision, two swarms oscillate near a limit-cycle, where each swarm rotates 
around the other while main-taining an approximately constant density. Using our methods, we are able to 
predict the critical swarm-swarm interaction coupling (below which two colliding swarms merely scatter) for 
nearly aligned collisions as a function of physical swarm parameters. We show that the critical coupling 
corresponds to a saddle-node bifurcation of a limit-cycle in the constant-density approximation. Finally, we 
show preliminary results from experiments in which two swarms of micro UAVs collide and form a milling 
state, which is in general agreement with our theory.

1.0 INTRODUCTION

The emerging spatial-temporal motions of swarms of interacting agents are a subject of great interest
in application areas ranging from biology to physics and robotics. Typically, swarming entails robust,
self-organized motion, that emerges from the interaction of large numbers of simple mobile agents.
Examples have been observed in nature over many spatiotemporal scales from colonies of bacteria, to
swarms of insects[1, 2, 3, 4], flocks of birds [5, 6, 7], schools of fish[8, 9], crowds of people[10], and active-
matter systems[11]. Understanding the underlying physics behind swarming patterns and describing
how they emerge from simple models has been the subject of significant work in the mathematical and
engineering sciences [12, 13, 14, 15, 16, 17, 18, 19, 20]. In pushing the theory to robotic platforms,
engineers have focused on designing and building swarms of mobile robots with a large and ever
expanding number of platforms, as well as virtual and physical interaction mechanisms[11, 21, 22, 23,
24]. Robotic applications range from exploration[22], mapping[25], resource allocation [26, 27, 28], and
swarms for defense [29, 30, 31]
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Since robotic swarms must operate in real environments, theoretical and experimental swarming
systems have been analyzed in many contexts, including swarms of mobile robots with homogeneous and
heterogeneous agents and delayed communication[32, 33]. Moreover, the dynamics of robotic swarms
have been tested in complex environments, from drones flying in the air, to boats tracking coherent
structures in complex flows, and collaborating robots locating sources in turbulent media[34, 35].

When deploying swarms in uncertain environments of varying complexity and geometry, it is impor-
tant to understand stability. Recently, we have analyzed stability of swarms in various configurations.
For example, we have studied swarms with complex network topology, and quantified instabilities aris-
ing from heterogeneous topology in the number of local interactions each agents has[36]. We have
examined the effects of communication delay and how environmental noise destabilizes self-organized
patterns[37, 38]. In addition, we have analyzed other environmental effects, such as range-dependent
communication and surface geometry, as a function swarm control parameters [39, 40].

In all of the above–mentioned research we have considered only a single swarm and its stability in
complex environments. Here we extend our analysis to multiple, interacting swarms, and their resulting
patterns. The general model that we use to describe the dynamics of both single and interacting swarms
contains self-propulsion, friction, and gradient-forces between agents:

r̈i =
[
αi − β|ṙi|2

]
ṙi − λi

∑
j 6=i

∂riU(|rj − ri|) (1)

where ri is the position-vector for the ith agent in two spatial dimensions, αi is a self-propulsion
constant, β is a damping constant, and λi is a coupling constant[41, 42, 43, 44]. The total number of
swarming agents is N , and each agent has unit mass. Beyond providing a basis for theoretical insights,
Eq.(1) has been implemented in experiments with several robotics platforms including autonomous
ground, surface, and aerial vehicles[32, 33, 40]. We remark that Eq. (1) contains most of the relevant
physics needed to model an enormous class of behaviors.Moreover, additional physics, stochastic effects,
and network communication topologies may all be added to match many experiments.

In this paper, we restrict ourselves to the well-known interaction Morse potential, U , which controls
local attraction and repulsion length scales between interacting agents:

U(r) = Ce−r/l − e−r. (2)

2.0 THE GEOMETRY AND DYNAMICS OF COLLIDING SWARMS

We use Eq.(1) to model two interacting swarms with the same underlying dynamics but different
parameters and initial conditions. The most straightforward collision scenario consists of two flocks
colliding, where each swarm has achieved velocity consensus well before collision. The initial distance,
D, which separates the swarms is large enough so that the interaction forces between the swarms are
exponentially small, and θ defines the interaction angle. (See Fig. 1.) The potential function of the
Morse potential is defined by
where C, l define the repulsion and length constants respectively, and the attraction length constant is
scaled to unity.

Given the initial flocking state configurations, there are three possible final states of the combined
interactions, shown in Fig. 2; i.e., flocking where the swarms combined to form a translating state,
milling where the combined center of mass is stationary, or scattering where the swarms pass through
each other and flock in different directions.
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Figure 1: The geometry of two colliding swarms. The initial 
configurations are flocking states, which intersect at an angle θ.

Figure 2: Possible final combined configurations of colliding swarm: flocking 
states (left), milling states (middle), and scattering states (right).

A useful quantity for distinguishing between the three possibilities is the polarization, P, given by

P =
|
∑

i ṙi|∑
i|ṙi|

. (3)

When the agents are in alignment, P ≈ 1, and it is approximately zero when they are ani-parallel.
Therefore, when the swarms are in the flocking state, P ≈ 1, while in the milling state, P ≈ 0. When
the swarm is in the scattering state it is between 0 and 1. The polarization has been used to quantify
the parameter space comparing angle θ against the coupling strength λi = λ in Fig. 2. We notice that
there exist distinct regions in parameter space where the milling state exists, as well as other regions
show the existence of scattering and flocking.

3.0 THE MILLING STATE - STOPPING COLLIDING SWARMS

We now wish to concentrate on how one swarm may capture another into a combined milling state
where the combined center of mass is stationary and the polarization is close to zero. To satisfy the
latter, θ must be relatively small so that the total momentum is near zero. We make a new diagram
showing exactly where the scattering-to-milling transition occurs for small θ as a function of coupling
λ; an example is shown in Fig. 4. The stable swarm states after collision are specified with blue and
red for scattering and milling, respectively; the green portions indicate the formation of a combined
flocking state, which is comparatively infrequent for small θ (and decreases in frequency as N →∞).

In addition, in the right panel of Fig. 4, we show an example of the approach to the milling state as
a series of time snapshots. Initially, the swarms are far apart in flocking states with constant velocities.
As the two swarms approach, however, each agent begins to sense the forces of intra-agent swarmers,
causing the two swarms to rotate around each other while maintaining an approximately constant
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Figure 3: Polarization as a function of collision angle θ and coupling strength λ. 
See [45] for details and parameter values.

inter-swarm density. Over time the two swarms slowly relax to a well-mixed milling state composed of
uniformly distributed agents from both.

Motivated by Fig. 4, one useful observation that can be made regarding the swarms is that, when
flocking towards a collision, each swarm behaves as a rigid body. Assuming such motion in the swarms
leads one to hypothesize that there exists a constant density approximation when all agents have
the same characteristics. Such an approximation can used to create a theory for the center-of-mass
dynamics describing the approach to a milling state, as shown in [46]. In the left panel of Fig. 5, the
center of mass dynamics for each swarm is shown at the critical coupling, λmin: the smallest coupling,
over all collision angles, at which a milling state is stably formed.
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Figure 4: Two swarms colliding. A scattering diagram is shown on the left that specifies the outcome of two-
swarm collisions as a function of the incidence angle and the coupling strength. On the right are four time 
snapshots of the swarms at the critical point– the minimum coupling, λmin, at which a collision results in a mill. 
Swarm parameters are α = 1, β = 5, C = 10/9, l = 0.75, and N = 100.

The constant density theory predicts that in order for the milling state to occur, the dynamics
must approach a stable limit cycle of the interacting centers of mass. Within this approximation, the
critical coupling corresponds to a generic saddle-node bifurcation. In general, the limit cycle acts as
a capture radius, whereby the two interacting flocks slowly converge to a common, stationary center
The same theory can be used to predict the maximum size of the transient center-of-mass oscillations
as a function of the repulsive coupling, C. In the right panel of Fig. 5 the theory is plotted against
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Figure 5: Collision dynamics resulting in milling. (a) Center-of-mass trajectories for two colliding swarms when λ 
= λmin, shown with solid-blue and dashed-red lines. Arrows give the direction of motion. The dashed-black line 
indicates the bifurcating limit cycle in the uniform constant density approximation. Other swarm parameters are 
α = 1, β = 5, l = 0.75, N = 100, and C = 1.0. The inlet panel shows the corresponding trajectory for λ = 2λmin. (b) 
Maximum x-coordinate reached by the center of mass of the rightward moving (blue) flock when λ = λmin. 
Simulation results are shown with blue circles for l = 0.75, green diamonds for l = 0.6, and red squares for l = 0.5. 
Limit-cycle predictions from theory are drawn with lines near each series. Other swarm parameters are α = 1, β = 
5, and N = 200.

numerical simulations to show how well the predictions work for a range of different repulsive-force
strengths.

4.0 ANALYSIS AND FINAL RESULTS OF SWARM SYMMETRY AND                               
ASYMMETRY
One interesting aspect of the theory is that it can provide a range of parameter predictions for the
critical coupling, λmin, when the swarms are both symmetric and asymmetric. In particular, from the
theory one can define the critical parameter for the saddle-node bifurcation via an equation analogous
to an escape-velocity relation,

v2/2−NλminVeff(C, l) = 0, (4)

where v is the speed of each flock, and Veff(C, l) quantifies the strength of the potential between agents
(see [46] for full mathematical details). In terms of scaling Eq.(4) implies that, if the potential-forces
and number of agents are held constant, flocks moving twice as fast require four times the coupling in
order to capture. Similarly, flocks with twice as many particles must fly

√
2-times faster in order to

escape capture.
We can use the theory to example how the velocity and potential function define the critical cou-

pling λmin as we sweep physical swarm parameters. Examples are shown in Fig. 6. In the left subplot
we show results for collisions with symmetric parameters. Our predicted scaling collapse holds. Quali-
tatively, the critical coupling increases monotonically with C, implying that the stronger the strength
of repulsion, the larger the coupling needs to be in order for colliding swarms to form a mill. Also, note
that our predictions are fairly robust to heterogeneities in the numbers in each flock, particularly for
smaller values of C/l − 1; predictions remain accurate for number asymmetries in the flocks as large
as 20%. In the right panel, we consider how theory compares in the asymmetric case of two swarms
with different velocities. In particular, agents in one flock have self-propulsion αi = α(1) = 1, while
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Figure 6: Critical coupling for forming milling states upon collision. (Left panel) Symmetric parameter collisions 
for α = 1 (blue) and α = 2 (red): N = 10 (squares), N = 20 (diamonds), N = 40 (circles), and N = 100 (triangles). 
Green stars denote α = 1 and magenta x’s denote α = 2, when 40 agents collide with 60. (Right panel) Asymmetric 
collisions for C = 10/9 in which α(1) = 1. Blue points indicate equal numbers in each flock: N = 20 (diamonds), N = 
40 (circles), and N = 100 (triangles). Green stars denote collisions between 40 agents with α(1) = 1 and 60 agents 
with α(2). Solid and dashed lines indicate theoretical predictions. Other swarm parameters are β = 5 and l = 0.75.

αi = α(2) is varied for the other flock. Again we see that when two swarms come together at the critical
coupling; the results between bifurcation theory and simulations agree well.

5.0 PRELIMINARY COLLIDING SWARM EXPERIMENTS

We have begun to test our theoretical predictions in colliding swarm experiments, where we imple-
mented a mixed-reality setup[32, 33]. To verify the presented theoretical model we used up to eight
Crazyflie micro-UAVs, shown in Fig. 7(b); however eight is an insufficient number of robots to see
meaningful interaction between two large intersecting swarms. To help increase the number of agents
that were used during experimentation we used mixed reality to couple real and virtual robots[47]. In
running the experiments, we used a dimensional version of the Morse potential given by

U(ri, rj) = cre
−|ri−rj |

lr − cae
−|ri−rj |

la . (5)

where cr is the repulsion strength and lr is the length scale of the repulsion; likewise ca is the attraction
strength and la is the attraction length scale.

The mixed reality system shown in Fig. 7(a) uses a Vicon motion capture system in a 15x15m
room with between 5-8 Crazyflie micro UAV. The robots positions are shared through a ground station
which also runs the simulation. All agents positions are combined on the ground station and new
positions for the real robots are determined by using a double integrator model of the agents. Figure
8(a) demonstrates how the physical robots interact with simulated agents. The simulated agents, red
dots, are projected into the real world using a camera calibration and the real agents are highlighted
by blue circles. These results allow for further improvement of theoretical predictions and increase
preparedness for field experimentation.

Further examples of mixed reality experiments of two colliding swarms forming a milling state
with a stationary center of mass are shown in Figure 8. In addition to eight real robots vs. eight
simulated robots and see a mill form, we consider even more agents where there are 5 real robots with
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Figure 7: In Figure 7(a) a mixed reality experimental platform is shown, which relies on each agent real 
and simulated having a global position and receiving some control command. In Figure 7(b) an example of 
the Crazyflie 2.0 Micro-UAV, which is used with the Crazyswarm Software. [48].

45 simulated robots versus 50 simulated robots. Due to the inclusion of physical agents which require
space between them it is necessary to consider larger repulsion parameters, cr and lr, to ensure robot
safety. It is clear that even when these values are changed that experimentally a stationary mill is
observed.

Although preliminary, the results show that when the theory is translated to experiments, we can
have one swarm capture another based on the physical parameters chosen. Conversely, our theory
and experiment should also predict when colliding swarms will not form a milling state; i.e., based on
known parameters and sizes of the swarms, we can show one swarm cannot capture another. Other
measures beyond the polarization of how the colliding swarms mix can also be ascertained; one such
metric of measuring the scaling of the density of one swarm with respect to another is presented in the
Appendix A for the mixed reality experiments.

6.0 CONCLUSION AND DISCUSSION

Here we studied the collision of two swarms with nonlinear interactions, and focused in particular on
predicting when such swarms would combine to form a mill. Unlike the full final-scattering diagram,
which depends on whether or not a particular set of initial conditions falls within the high-dimensional
basin-of-attraction for milling – a hard problem in general, we concentrated on predicting the minimum
coupling needed to sustain a mill after the collision of two flocks. By noticing that colliding swarms,
which eventually form a mill, initially rotate around a common center with an approximately constant
density, we were able to transform the question of a critical coupling into determining the stability
of limit-cycle states within a rigid-body approximation. This approach produced predictions that
were independent of initial conditions (only depending on physical swarm parameters) and provided a
lower-bound on the critical coupling for small collision angles. For example, in the case of symmetric
flocks with equal numbers and physical parameters, the scatter-mill transition point was similar to an
escape-velocity condition in which the critical coupling scaled with the squared-speed of each flock, and
inversely with the number of agents in each flock. Our bifurcation analysis agreed well with many-agent
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t = 0.0s t = 15.5s t = 30.0s t = 60.0s

(a) Eight real and eight virtual robots

t = 0.0s t = 15.5s t = 30.0s t = 60.0s

(b) High Repulsion

Figure 8: An example of two time series mixed reality experiments. Figure 8(a) shows 8 virtual colliding with 8 
real robots. Figure 8(b) shows an experiment in which 5 real robots join with 45 simulated robots to 
collide with 50 simulated robots.

simulations.
Recent work in swarm robotics and autonomy has begun to address how one swarm can detect,

redirect, capture, or defend itself against another[49, 50, 51]. However, most approaches are algorithmic
and lack basic physical and analytical insights. Our work fits nicely into the robotic swarm capture and
redirect problem, since the critical coupling sets a general divide in parameter space between scattering
and milling swarms operating with general physical interactions and dynamics. In this paper, however,
we have not included the effects of communication delays or internal and external noise effects, which
play a significant role in swarms of mobile robots[33, 32]. For example, it is known that when the center
of mass of a single swarm is stationary, time delays in communication can result in stable oscillations
in the center of mass itself. The oscillations are the result of a general delay-induced Hopf bifurcation.
On the other hand, it is also known that (even) small amounts of noise can act as a force, inducing
large changes in swarm behavior[52]. Such large fluctuations may happen in the case where there are
multiple attractors for the center of mass of two interacting swarms. In such cases, noise “kicks" the
center of mass from one attractor to another. For these and other scenarios, new theory and potential
controls will have to be developed using some of the techniques we have presented here to model how
one flocking swarm can capture another.
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APPENDIX A
In addition to polarization to quantify the nature of the milling state, it is useful to find how one
swarm embeds itself in another. One possible way to achieve this is to compute the local density of
the swarm with respect to another. To evaluate the level of interaction between the two swarms we
consider that for all agents in swarm A we compute the following using swarm B:

γ(r) =
∑
i∈A

∑
j∈B

f(ai, r, bj), (6)

where f(ai, r, bj) is defined as follows:

f(ai, r, bj) =

{
||ai − bj || < r 1

||ai − bj || ≥ r 0,
(7)

where r is the radius of inclusion.
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Figure 9: The plot shows how the γ(R) changes as a function of ball size radius R. The value of
repulsion constant cr is varied between 1.0− 5.5 and fixed the repulsion length scale to be lr = 0.1.

This metric is calculating how many agents of a different swarm are in a local neighborhood. It can
be shown γ(r) is related to the fractal or capacity dimension[53]. By varying the radius of inclusion,
one can see how the relative density varies, as shown in Fig. 9. Notice that there exists an inertial
range where γ(R) exhibits roughly linear behavior, which signifies a scale invariant local density of one
swarm relative to another. We find that the mean slope in the inertial region is µ = 1.59± 0.19. The
slope reflects a dimension that is fractal, which implies that the agents of one swarm are embedded in
another in a complicated way.
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